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Abstract

Numerical methods, particularly finite element analy-
sis (FEA), have greatly assisted engineers in innovating
across all industries. Although FEA provides the flexibil-
ity to model complex shapes and loads, there is a computa-
tional ceiling that results from models containing too many
elements. Deep learning may be a way to reduce the run
time and memory of large models. In this paper, we propose
a way to predict FEA analysis results by training graph con-
volution networks (GCNs) on a previous set of FEA results.
Using 4 different GCN architectures (GCNConv, TAGConv,
MFConv, and ChebConv) the mean square error (MSE) and
visual results were compared against one another. Cheb-
Conv, a spectral GCN method, demonstrated the best results
with a test MSE of 0.0015.

1. Introduction

Numerical methods have been an integral part in advanc-
ing technology by allowing for complex partial differential
equations to be solved through discretization [22]. A par-
ticular area of interest for this application was engineering
simulation due to the complex shapes of components and
assemblies. Finite element analysis (FEA) and computa-
tional fluid dynamics (CFD) are the most used methods of
engineering simulation that work by splitting up a shape
into many smaller elements with simple shapes. Since
each simple shape can be solved for analytically, the entire
shape can be solved by connecting all the elements, apply-
ing boundary conditions, and loads [21, 24, 15]. This tech-
nique was critical in determining deformations and stresses
in complex parts for the design of the space shuttle, which is
what lead to the development of the FEA software, and first
pieces of software altogether, NASTRAN (Nasa Structural
Analysis) [18].

Although FEA has allowed engineers and scientists to
flexibly predict part performance, there are still issues that
limit its applicability. Firstly, as the number of elements in

a model increases so does the run time and memory of a
simulation. The complexity of an FEA model generally is
O(N2), where N is the number of elements in the model.
[12]. Even considering Moore’s law, models of large as-
semblies (as seen in Figure 1) and parts will never be feasi-
ble using this method. Other issues and considerations with
FEA include numerical stability, model accuracy, and con-
vergence with varying time step, element type, and mesh
refinement.

Figure 1. Example of a large FEA model of an airplane showing
the stress contours of a given load.

Over the last 50 years FEA has been improved but the
main methodology remains intact. Researchers are now at-
tempting to enhance, or replace, FEA and CFD with ma-
chine learning [17]. In general, machine learning, and par-
ticularly deep learning, has demonstrated powerful results
when applied to specific applications, but have difficulty be-
ing transferred to other fields. For example, the stresses of
an artery stent design were predicted using a fully connected
deep learning linear layer. However, this is only effective
if the number and arrangement of nodes remains consistent.
As of now, the most established application of deep learning
in numerical analysis is with shape optimization of aerody-
namic structures [14, 2, 20, 6].

To improve the flexibility of deep learning applied to
simulation, graph neural networks (GNNs) may be a solu-
tion. Like an FEA mesh, graphs are complex, unstructured
networks that can contain large number of nodes, vary-
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ing node degrees, and varying graph architectures. These
attributes have made graph deep learning a very active
and new field of research, especially given the implica-
tions of social analysis, bioinformatics, and computer vision
[23, 3, 5, 13].

Figure 2. Representation of a Convolutional Neural Network (left)
and a Graph Convolutional Network (right). Both methods involve
weight sharing via a fixed size kernel which is strided over the
image or graph.

Graph convolution networks (GCNs) can be split up
into two different approaches: spectral-based models and
spatial-based models. Spectral-based methods are con-
structed with frequency-based filtering that perform an
eigenvalue decomposition on the graph Laplacian matrix
[4, 16, 8]. While this shows promise for specific application
of fixed graph networks, there are known limitations when
transferring the learned Eigen parameters to different graph
architectures. Spatial-based methods are more closely re-
lated to CNN models for grid-like data (images) in that they
rely on extracting locally connected regions from graphs (as
seen in Figure 2). Many architectures have been derived
off this base principle and has shown great success in teas-
ing out complex data from irregular, varying sized graphs
[19, 10, 7, 11].

This paper investigates the application of graph convolu-
tion networks for mechanical simulation traditionally per-
formed by FEA. Firstly, the training and testing data was
created by the team using the simulation software, ANSYS
[1]. A 2 dimensional, static structural model was created
with constant material properties and loading conditions,
but varying geometry in the mid-section. Training was per-
formed on the first 6 models and validation was performed
on the last model. Four different graph convolution network
layers available in Torch Geometric were explored, compar-
ing the models by the test case’s mean squared error (MSE)
and images of the stress distribution. All of the models
predicted the similar stress distributions to the ground truth
FEA simulation with the “ChebConv” architecture demon-
strating the best results.

Figure 3. Visualization of an example GCN model.

2. Approach

2.1. Data Creation

To test the performance of different GCN architectures
applied to FEA, a data set was created using the simula-
tion software, ANSYS. There are some simulation data sets
available publicly, but most of them are not in a format that
can be easily transformed into a graph format. By build-
ing and running our own models the input and output can
be controlled and eventually transformed into a PyTorch
friendly data set.

Seven different 2-dimensional static, structural models
were created. Seven data points is traditionally a very small
data set for deep learning but for this application we are in-
vestigating a determinate system. In other words, random-
ness is not involved in numerical analysis and as long as
the models do not differ greatly between data points, seven
models is sufficient. The model contains two flat edges with
rounded edges that make up a bulged bar shape. The radius
of the rounded edges was altered to create different data
points. The left and right edges contain the same number
of nodes across all data points. The left edge of the struc-
ture is fully constrained with the right edge displaced in the
“x” direction by a fixed value of 1mm. The material used in
the model was ”Structural Steel,” which is available in the
default ANSYS material library.

The FEA model has a “mesh” associated with the struc-
tural model which is a series of nodes and elements. A mesh
example is visualized in the Figure 4. This mesh is essen-
tially a graph and is used to create node adjacency vector.
For this study there are only two continuous input features,
“x” node coordinate and “y” node coordinate, and one con-
tinuous output variable, “Von-mises Stress” for each node
in the mesh. There could be many more input and output
features for this data set but we opted to keep our data set
simple as a proof of concept.

One challenge that we encountered was regarding how
to feed training examples to our models. Initially, we at-
tempted to created one large disconnected graph contain-
ing all data points and masking off different portions during
training. Later it was decided that it would be better to keep



the data points in separate graphs and train with them in-
dividually at each iteration with the hopes that the models
would learn how to more completely predict the distribu-
tion of stresses for a given data point. This seemed to yield
slightly better results regarding how stress was distributed.

Figure 4. 2D mesh representation of a data point generated by AN-
SYS. Each intersection represents a node.

2.2. Training and Testing Process

The objective of this project is to predict the stress value
at every node in the graph based on the graph network and
individual node positions and their proximity to neighbor-
ing nodes. PyTorch was the library used to perform the op-
timization and back propagation, with PyTorch Geometric
library providing specialized graph convolution modules.
Each graph convolution architecture was trained using 6 of
the data points in 6-fold cross validation and tested on the
final, 7th data point. The quantitative metric used for the
model loss and results evaluation was the MSE of the node
stress across the entire graph. This loss function and metric
was chosen as it heavily penalizes outliers and is a com-
monly used, general purpose loss function used in regres-
sion problem domains.

The network architecture used for each model was the
same and consisted of a convolution layer, ReLu activation
layer, Dropout layer, and convolution layer. This is a com-
mon architecture used for GCN’s and we kept it static to
allow easier comparison between models. The Adam opti-
mizer provided by PyTorch was used as it is easy to tune and
incorporates some of the best features of Adagrad and RM-
SProp. For each model, the hyperparameters were tuned to
yield best results. The hyperparameter values selected for
each model can be seen in Table 1.

2.3. Convolution Modules

GCNConv
GCNConv is a graph-based semi-supervised learning algo-
rithm outlined in Kipf and Welling [16] where the learner

Model Learning
Rate

Weight
Decay

Hidden
Layer
Size

Epochs
Filter
Size
K

GCNConv 0.01 1e-7 16 400
MFConv 0.01 1e-7 16 300
TAGConv 0.01 1e-7 16 300 5
ChebConv 0.005 3e-7 32 600 5

Table 1. Empirically found best hyperparameters used in experi-
ments.

is provided with an adjacency matrix, A, and node fea-
tures, X, as input and a subset of node labels, Y, for train-
ing. GCN is spectral based, where eigen-decomposition of
the graph Laplacian is used in network propagation. This
spectral method is used to aggregate neighboring nodes in a
graph to infer the value of the current node. In GCNConv,
eigen-decomposition is performed via approximation to re-
duce runtime.

The propagation rule is represented by the following
equation. GCNConv equation:

X′ = D̂−1/2ÂD̂−1/2XΘ

Where X′ represents the output of a particular layer,
X is the input of the layer, Â is the adjacency matrix
including self-loops, D̂ is the degree matrix of Â, and Θ is
a matrix containing the learned filter parameters. As noted,
the adjacency matrix is modified to include self-loops with
the implication that node labels depend on the features of
neighboring nodes as well as its own features.

ChebConv
ChebConv uses spectral methods for graph convolution.
It uses the Chebyshev spectral graph convolutional op-
erator showcased by Defferrard et al. [9]. It uses Graph
Signal Processing to generalize convolution and which
incorporates the entire structure and individual components
of the graph.Computation works by finding the eigen-
decomposition of the graph Laplacian (L in the below
formulae).

X′ =

K∑
k=1

Z(k) · Θ(k)

where Z(k) is computed recursively by,

Z(1) = X

Z(2) = L̂ · X
Z(k) = 2 · L̂ · Z(k−1) − Z(k−2)

and L̂ denotes scaled and normalized Laplacian 2L
λmax

− I.
In summary, the graph and the kernel are transformed

into spectral domain using eigen-decomposition. Convo-
lution is performed using the spectral graph and spectral



kernel. Results are converted back to spatial domain using
inverse fourier transform. The kernel used is Chebyshev
polynomials of the diagonal matrix of Laplacian eigenval-
ues. The above formuale represents the kernel. Pooling
methods used is graph coursening, which groups together
similar vertices.

TAGConv
TAGConv is the topology adaptive graph convolutional
networks operator demonstrated by Du et al. [10]. This
convolution layer is similar to GCNConv, but it is expanded
to multiple learning kernels for groups of nodes with
different node degrees. The TAGConv equation:

X′ =

K∑
k=0

(
D−1/2AD−1/2

)k
XΘk

Where A denotes the adjacency matrix and
Dii =

∑
j=0 Aij its diagonal degree matrix. The in-

tent of this architecture is to separate learned features
from nodes that have more or less neighbors. These node
degree separated learned parameters allow for flexibility in
regards to irregular graph structures and has demonstrated
promising results in graphs with a large number of node
degrees.

MFConv
MFConv is the graph network operator from the method-
ology depicted by Duvenaud et al. [11]. This convolution
layer follows the same idea as TAGConv, but instead of
expanding GCNConv to average across node degrees, this
method directly trains a distinct weight matrix or each
possible node degree. The equation:

x′i = W
(deg(i))
1 xi + W

(deg(i))
2

∑
j∈N (i)

xj

Where W
(deg(i))
1 is the weight matrix applied to every

node with the same node degree. Because this directly trains
separate weight matrices, the number of learned parameters
can be large since it scales linearly with the number of node
degrees and hidden layers.

3. Results
The results of our experiments were promising. GC-

NConv, MFConv, TAGConv and ChebConv models were
each trained with hyperparameter configurations shared in
Table 1. Following training, a single test was performed on
a hold out data point and results were compiled in Table
2. It is worth noting that test results show minor variations
following separate training trials and different hold out data
points but the same general trends were observed.

To measure success we looked at quantitative aspects
such as MSE between the test predictions and ground truth

and the wall-clock time. We also looked at qualitative
aspects of model performance such as the distribution of
stresses in the structural models. We were able to achieve
low test MSE for all models, with ChebConv achieving the
lowest. Generally, we can see that as model complexity
increases, MSE decreases. Additionally, we generally ob-
serve higher training and test times as complexity increases.

Qualitively, we observe in Figure 6 that even with a low
MSE there are still differences in how stress is distributed
in the structural models. Most notably, in the ground truth
we observe pronounced points of high stress in the corners
that are not as extreme in any of the stress mappings pro-
duced by the models. This may be due to the distributive
bias of GCN models, especially in spectral models, where
there is a smoothing among node labels. The two mod-
els that best characterize these stress concentrations were
MFConv and ChebConv. This may be due to the inherent
separation of learning parameters of both of these methods.
MFConv separates learned parameters based on the node
degree and ChebConv performs an Eigen decomposition,
using however many of the first values. These both allow
for the model to potentially localize learned parameters to
particular areas of the graph.

One item of note is that throughout our experiments we
observed no evidence of overfitting. This can be confirmed
by the learning curves provided in Figure 5. This is due
to the deterministic nature of the stress calculations and
the lack of noise. We can speculate that further training,
through additional data points and epochs, can only improve
results. Additionally, due to the reasons above, the models
also had no issue with generalizing. In all of the test cases
the models were able to produce a similar approximation of
the ground truth as seen in Figure 6. Since overfitting is not
possible it stands that generalization is not a concern.

The results of the experiments were successful as we
have shown that Graph Convolution Networks can be com-
petitive with traditional FEA simulations. We have seen that
our experimental results can approximate the output of FEA
simulation both in stress values and distribution. The re-
sults here were not perfect but due to the lack of overfitting
it can be inferred that with more complex model architec-
tures, hyperparameter tuning, and experimentation we can
achieve even closer approximations. Additionally, a major
benefit of using GCN’s for FEA simulation is the run time.
The FEA simulation run-time of 1.859 seconds is multiple
orders of magnitude higher than the highest test time of our
models, 0.010 seconds. This difference is likely to be even
more pronounced in more complex simulations. Although
we worked with simple 2D structural models with the same
material and external forces among all our data points, there
is no reason that the methodology used here cannot be ex-
panded to more complex simulations.



Figure 5. Training and Validation Learning Curves for each model.
Even at high epochs no overfitting is observed in any model.

Figure 6. 2D Visualization of structural model test data point in-
cluding ground truth generated by ANSYS FEA simulation. Color
represents stress magnitude in Pascals. Magnitudes of stress are
not as extreme as in the ground truth but distribution of stresses
are similar.



Model Params Test
MSE

Train
Time

(sec / 100
epochs)

Test
Time
(sec)

GCNConv 65 0.00338 24.282 0.002
MFConv 1243 0.00234 77.27 0.008
TAGConv 625 0.00203 76.11 0.008
ChebConv 513 0.00150 281.367 0.010
ANSYS FEA 1.859

Table 2. Results of models including number of trainable param-
eters, test MSE, and wall-clock times. ANSYS FEA run-time in-
cluded for comparison.

4. Conclusion
Using ANSYS as a simulation software, a data set of

FEA results were created to investigate the feasibility of
deep learning to replace traditional numerical analysis. By
running different models, GCN models were trained to pre-
dict the Von-mises stress throughout the model with only
the nodal x and y coordinates as input features. In general,
the experiment was a success and proved that GCNs can
predict the results of an FEA model within a reasonable de-
gree of accuracy, despite having a traditionally small data
set. The spectral GCN method of ChebConv proved to be
the most accurate, demonstrating not only a very low MSE,
but great visual agreement with the ground truth results re-
garding the location of the stress concentrations. Addition-
ally, we have seen that predictions can be made from these
models in a fraction of the time of traditional FEA simula-
tions.

There are a few avenues for future work on this topic.
Firstly, more input features can be added to the graph in-
cluding material properties, loading conditions, and time.
Next, the breadth of models can be increased to create a
more general GCN model to perform more types of anal-
yses. Finally, testing the computational performance on a
very large model to benchmark performance will be impor-
tant for demonstrating the potential impact of this method-
ology.

5. Work Division

Work was divided between the team members as follows:

Brandon Wetzel

Created data import utility and code framework for
running individual experiments. Ran experiments for
GCNConv. Contributed to results section of report.

Hayden Cornwell

Created data set of FEA results. Parsed data into a
clean and Python friendly form. Ran experiments for
TAGConv and MFConv, along with other Conv layers in
Geometric documentation. Wrote Intrdoduction section
and contributed to Approach section and Conclusion.
section of report.

Parth Joshi

Contributed to the Code repository. Tuned and computed
results for ChebConv Graph convolution architecture. Ex-
perimented with other graph convolution architectures(eg:
GraphConv) for better results. Contributed to different
sections of the report.
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