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ABSTRACT
Freight transportation is a significant contributor to
CO2 emissions which have caused an increase in global
temperatures with adverse environmental effects (Al-
Ghussain, 2018). Using a route optimisation algorithm
to cluster similar ports into hubs-and-spokes we can
improve the CO2 efficiency of shipping traffic in the
specific example of the US east coast.
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PROBLEM DEFINITION
Gu specifically discusses maritime freight transport as
a significant component of CO2 emissions (Gu, 2019).
Tatar supports Gu’s point with geospatial visualizations
and statistics showing an increasing trend in CO2 (Tatar,
2018). Furthermore, according to the Guardian (Laville,
2019), in France, Germany, UK, Spain, Sweden and Fin-
land shipping emissions in 2018 were larger than the
emissions from all the passenger cars registered in the
largest cities in each of those countries. Moreover, this
has been a topical issuewith the UN IMO setting a target
of shipping emissions reduction of at least 50% by 2050
(UN Secretary General, 2019), as international transport
contributes 2.5% of the global emissions (UN Environ-
ment Programme 2019). Various agency resources are
currently being devoted to this issue with an estimated
$1 trillion needed to de-carbonize shipping between
2030 and 2050 (University Maritime Advisory Services,
2019). Fleet management and voyage plan optimization
is estimated to reduce CO2 shipping emissions shipping
by 5% (Energy Transitions Commission, 2018).

SURVEY
Bauer attempted to solve the CO2 emissions problem
on railroad freights, which she describes as a "service
network design problem" (Bauer, 2015) by formulat-
ing a mixed-integer linear program. By leveraging this
approach, Team 42 uses an optimization model and de-
rives a model that generalizes the size of a freight ship
to determine appropriate CO2 emissions.
Currently, CO2 emissions in freight traffic are man-

aged based on global policies known as theMBM,where
freight traffic abide by freight rates and pay for ticket
costs (Amann, 1993). Team 42 plans to improve on
Amann’s paper by incorporating a reduction of CO2
emissions into these policies, based on the concept intro-
duce in Shapiro’s paper in assessing the environmental
costs of CO2 emissions (Shapiro 2016). There are ex-
isting methods of route optimization to reduce freight
costs (Andersson, 2015), but not CO2 emissions. Team
42 leverages ideas from Andersson’s paper to optimize
traffic routes and will improve those ideas by solving
an optimization problem to minimize CO2 emissions
(rather than freight efficiency).
In order to optimize routes to minimize CO2 emis-

sions, Team 42 proposes the following clustering model:
ports of close proximity (based on latitude/longitude),
will be clustered together as a “single” port cluster. This
“hub and spoke” network will also provide the model
assessment framework. O’Kelly noted in 1986 that hub-
and-spoke models are a way to work with transporta-
tion needs and to perform a type of network optimiza-
tion model between two points (Bryan O’Kelly, 1999).

INTUITION
Leveraging the hub-and-spoke model, as well as the
clustering algorithm, Team 42 plans to create an op-
timization model that minimizes the amount of CO2
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emissions in maritime freight traffic, while also optimiz-
ing the available freight traffic around certain clustered
areas. By focusing on the hub-and-spoke model, CO2
emissions in the shipping industry can be reduced by
simply transporting the same freight in trucks versus
shipping. This is consistent with Kim and Wee’s ap-
proach, noting that performing transportation utilizing
only one model (whether trucking or maritime only)
was incredibly inefficient from both a cost and a CO2
emissions perspective. Instead, Kim and Wee notes that
if inter-modal transportation routes were derived (that
is, trucks brought their shipments from one centralized
port to their local distributors), efficiencies both from a
cost and emissions perspective could be realized (Kim
and Wee 2014). Team 42 plans to leverage both O’Kelly
and Kim and Wee’s papers in order to develop a model
that leverages this hub-and-spoke functionality, to im-
prove on maritime traffic efficiencies both from a cost
and emissions perspective.
An additional crucial point is that both O’Kelly and

Kim andWeewas verbose in their papers. Team 42 notes
that the use of visualizations will help in describing the
model to a larger audience due to human perception
limitations when interacting with data (Olshannikova,
2016); visualizations will be used to represent the com-
plex relationships between the different ports (leverag-
ing Olshannikova’s paper as reference for good visuals).
By leveraging recent technological developments in
big data (AWS, Postgres), and visualization platforms
(Dash, Plotly, D3, React), Team42 will improve on the
visualizations referenced in the aforementioned papers.

An additional considerationmay be the seasonality of
the data andwhether weather and climate impact on the
traffic. Additional assessments may be performed with
the power of big data and the availability of geospatial
and climate data (Retchless, 2018). The team may use
Retchless’ book as a reference for interactive geospatial
visualizations.

DESCRIPTION OF APPROACH
Data Sources
This analysis was performed using Automatic Identifi-
cation System (AIS) vessel traffic data collected by the
U.S. Coast Guard through an onboard navigation safety
device that transmits the location and characteristics
of large vessels. The entire dataset includes records of

ships in U.S. coastal waters from 2009 to 2017, with
a sampling rate of every minute. The original data is
located: https://marinecadastre.gov/ais/.
The U.S. is split up into 20 zones, as seen in figure

(1). Since there will be little traffic from one coast to
another, only the eastern zones, 16 through 20, will
be used for December 2017. This represents the most
recently available monthly cross-section of data.

Figure 1: Map of respective zones split up by lati-
tude and longitude

The raw AIS data includes the following attributes:
MMSI (Maritime Mobile Service Identity), date/time,
latitude, longitude, speed over ground (SOG), course
over ground (COG), heading, vessel name, international
maritime organization ID (IMO), call sign, vessel type,
status, length, width, draft, and cargo.

Cleaning the Data
Jupyter Notebooks with Pandas was the primary soft-
ware used to clean and manipulate the AIS data for
the analysis. Once loaded into a Jupyter notebook, the
initial cleaning was as follows:

• Remove columns: SOG, COG, Heading, Vessel-
Name, IMO, CallSign, Draft, and Cargo.

• Remove all rows that include NaN.
• Filter out rows with an ambiguous status.
• Keep vessel types that are either Cargo or Tanker.
With this partially cleaned dataset, the location of

each ship was still recorded for every minute of the
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month. This data needed to further parsed to reference
only the single data point for a ship arriving or leaving
a port. The steps to implement are as follows:

• Sort data by VesselName and BaseDateTime.
• Copy the status column and shift one row down.
• Filter out to remove rows where the two status
rows are the same.

• Filter out to remove rows where the status is not
“moored” or “at anchor”.

The original dataset had around 95 million rows of
data. After the initial filtering, it is reduced to around
11 million rows, and after the last cleaning steps down
to 3325 rows.

Creating the Hub-and-Spoke Model
The next step is to create a “graph” of the entire ship-
ping network. Although the AIS data does not assign
ships to a port, we can assign ships to a port using a
clustering model. The clustering algorithm used was
Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) imported from the python library
“scikit-learn”. The size of the clusters is controlled by
the hyperparameter “epsilon”.
Figure 2 demonstrates how epsilon changes the hub

and spoke model. For each segment, it is assumed that
the ship starts at its original GPS coordinate, the starting
“spoke”, and travels to its assigned “hub” determined
by the clustering results. The ship then travels to the
ending GPS locations “hub”, then finally traveling to the
ending GPS location, the ending “spoke”. This various
paths travelled are to determine the total CO2 output
of each ship.

Calculating CO2 Output
Previous research to gauge the efficiency of different
shipping methods reports the CO2 efficiency through
the metric grams of CO2 per tonne per kilometer, seen
in figure 4. Maritime shipping is the most efficient
method and becomes more efficient as the size of the
ship increases. CO2 efficiency of different ship sizes
has been documented in prior work (Responsible Care
2011) and can be used to fit a curve. Although there
are not many data points, the CO2 to TEU relation can
be loosely fitted into a quadradic curve as seen in fig-
ure 5. Ship size is defined by twenty-foot equivalent
units (TEUs), which is the carrying capacity of a ship
for twenty-foot containers.

Figure 2: a) is an example of an “Unoptimized”
model where no hubs are assigned. The other
models are hub and spoke models with b) using a
lower value of epsilon and c) using a larger value
of epsilon.

Length and width of the ship are used calculate the
TEU for each ship. For a random sample of 28 ships of
varying lengths and widths in the dataset, the MMSI
of the ship was researched online to find its associated
TEU. As seen in figure 5, the ship area (the product of
length and width) correlates very well with TEU, and
thus can approximate TEU.
The equations for both regression curves are listed

below:
𝑇𝐸𝑈 = (3.17688908𝑒 − 01𝐴𝑟𝑒𝑎)+

(2.06756025𝑒 − 05𝐴𝑟𝑒𝑎2) − 219.2003311
(1)

𝐶𝑂2 = (−4.32978571𝑒 − 03𝑇𝐸𝑈 )+
(1.39479467𝑒 − 07𝑇𝐸𝑈 2) + 36.15242554

(2)

With CO2 efficiency, to calculate the total CO2 output
the distance traveled and amount of cargo need to be



Team 42 NYC

Figure 3: Source: IMO GHG Study, 2009 (‘AP
Moller-Maersk, 2014’).

Figure 4: Overview of CO2 Efficiency versus TEU,
from Team 42’s model.

calculated. The Haversine distance formula, equation
3, was used to calculate distance between any two GPS
coordinates. Using this formula calculates the “as-the-
crow-flies” distance between two points, assuming the
ship travels a straight line between two ports, poten-
tially crossing over land. This over-land assumption is
reasonable as the model is a generalized heuristic. The
multi-modal approach accepts that it is sometimes more
efficient to have overlapping land and sea transport.

𝑑 = 2𝑟𝑎𝑟𝑐𝑠𝑖𝑛

(
√
𝑠𝑖𝑛2 (𝜑2 − 𝜑1

2
) + 𝑐𝑜𝑠 (𝜑1)𝑐𝑜𝑠 (𝜑2)𝑠𝑖𝑛2 (

𝜆2 − 𝜆1

2
))

(3)

The final portion of the CO2 calculation is to determine
theweight of the ship in tonnes, as this was not included
in the data. The calculation is based on the average
filled weight of a single twenty-foot container can be
estimated as 15 tonnes of dead-weight (Pike 2011). The

Figure 5: Overview of TEU versus Ship Area, from
Team 42’s model.

final assumption for the CO2 calculation is that all of the
ships with the same hub-to-hub segment will combine
their cargo to be transported by a single larger ship. As a
result, there will be two TEUs to factor when calculating
CO2. When the ship is traveling from the spoke to
hub, the TEU to calculate the CO2 efficiency and the
cargo weight will be the same. However, when a ship
travels from hub to hub, the TEU to calculate the CO2
efficiency will change to the sum of all of the ship’s TEU
that are traveling the same segment. With this higher
TEU, there will be a relatively lower CO2 output for the
hub-to-hub segment. This assumes that it is possible to
load up the larger hub-to-hub segment ships with a lot
more additional cargo and suggests the need for larger
capacity ships to drive down CO2 emissions.

Figure 6: Illustration of how cargo is combined at
the hubs.

By summing all of the CO2 values for each ship seg-
ment, we can have the total CO2 output for each hub-
and-spoke model.
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User Interface and Backend
Dash Framework.
We utilize the open-source library Dash to build our
user-interface (UI) because it allows us to create highly
custom and reactive web-base visualizations using sim-
ple native python.
Dash is reactive which makes it easy to create web-

interface elements which interact with each other. It
abstracts away web technologies such as Plotly.js (build
on top of D3.js) and React.js and allows you to interact
with the HTML and CSS elements directly using the
Python abstraction. This also mean that every element
of the application can be customized (the CSS, layout
etc). Dash further allows you encapsulate D3.js charts
directly if necessary. The frontend is rendered with
React.js which works in tandem with the declarative
python libraries provided as part of the toolset.
Dash also has a backend Flask web-server baked into

it that allows us to query the results produced above.
The front-end will interact with the web-servers using
JSON packages over HTTP request. Since the applica-
tion state is stored in the front-end , it also allows Dash
apps to be multi-tenant with multiple users having in-
dependent sessions.

Visualizations.
Our application follows a model-view-controller design
pattern that let us separate our visuals from the pro-
cessed data. We utilize the application logic to control
the flow of reprocessed data through the interface.
The main user control “Filters” are on the top right

of the UI. The dashboard dynamically updates to match
the control criteria and re-renders only the relevant
visuals on the page with this logic flow. We have filters
of "model epsilon”, “individual hub”, and “vessel type”.
The visualizations in the dashboard are based on the

key calculations produced above:
• The top high-level key metrics show shows the
total trips, model hubs, original actual CO2 emis-
sions vs the optimized CO2 to show the impact of
the model.

• The “Hub and Spoke Optimized Traffic Network”
map below allows us to see the difference in the
network routes based on different model epsilon
values optimizing the paths. It defaults to displays
all of the Hubs for a particular epsilon selection.
You can select Hub values to visualize the more
granular hub-and-spoke lines for a particular hub.

For example, changing epsilon from 0.1 to 0.35
would divert more of the ports to a single hub and
we can visualise the impact of the hub-and-spoke
improvements.

• The “Cluster Size vs CO2 emissions” interactively
updates based on the mouse-over location of a
spoke on the hub-and-spoke map. It gives a finer
grain understanding of how cluster size affects
the CO2 emissions. You can directly visualize how
CO2 emissions change as the epsilon value varies.

• The “Original Freight Traffic Network” map al-
lows the user to see the differences in network
routes once the model optimizes the paths. It will
color the original network nodes based on which
hub they belong to. It gives a high-level overview
to how the paths are re-categorized based on dif-
fering epsilon values.

• The 3D scatter-plot visual for “Vessel Dimensions
vs CO2 Efficiency” color-coded by vessel type to
demonstrate how vessel dimensions affect vessel
CO2 out. You can rotate this 3D plot to visualize
the pattern of CO2 efficiencies based on vessel
length/width.

• The “Overall Optimal Epsilon vs CO2 Emissions”
indicates what the overall best clustering size of
epsilon is for the network.

DESCRIPTION OF YOUR TESTBED
The list of questions that the experiment is designed to
answer includes:

• Can CO2 emissions be reduced based on route
optimisation techniques? If so by how much?

• What is the optimal route clustering size for a
hub-and-spoke optimisation model?

• Can a heuristic be modeled, based off of length
and width of a ship and distance traveled, in order
to approximate the carbon emissions?

DETAILS OF THE EXPERIMENTS
The main variable of interest for the hub-and-spoke
models is the cluster size of the hub. By varying ep-
silon from 0.00001 to 2.0, many hub-and-spoke models
were created. Epsilon is in units of GPS coordinates, so
the max value of 2.0 is relatively large and will create
clusters that will start to look unrealistic; the corollary
is also true in that a small epsilon will result in many
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Figure 7: Team Visualization Overview

clusters creating a network where no hubs exist (the as-
sumed prediction for actual CO2 emission is an epsilon
value of 0.0001).
Another assumption of this model is that hub-to-

hub travel breaks down when epsilon values exceed a
particular threshold. As the port cluster becomes larger,
the frequency of ships starting and ending in the same
cluster increases, resulting in additional distance for
each trip to travel. Although the hub-to-hub traveling
distance will be 0km in these cases since there is only
one hub, the more optimal route would be for the ship
to go directly to the end spoke, instead of visiting the
intermediate out-of-the-way hub first.
Figure 8 plots the total CO2 output versus epsilon.

The unoptimized model reports a CO2 output of 608
kilotonnes (kt). With only a small increase in epsilon,
the CO2 output decreases rather quickly to 400kt. This
is the point where the hub-to-hub optimizations give a
positive impact. In the plot, the minimum CO2 output
is for an epsilon value of 0.35. As epsilon increases from
this minimum, the hub and spoke model starts to see

Figure 8: Model Optimization

diminishing returns with the CO2 output beginning to
increase at an epsilon value of 0.5. This occurs because
you have more inefficient spoke-hub-spoke diversions
rather than the more efficient spoke-hub-hub-spoke
optimisations.

TEAM ASSESSMENT
All team members have contributed similar amount of
effort

CONCLUSIONS AND DISCUSSIONS
From our analysis, an optimal hub-and-spoke network
was found by clustering the ships destinations using
an epsilon value of 0.35. This reduces the predicted
CO2 output from 608kt to 377kt. Although this is the
optimal value our analysis, it is not certain if this value
of epsilon should be used universally to optimize other
shipping networks. Our results show that even a very
low epsilon value of 0.05 gives a CO2 output of 400kt,
which is very close to the optimal value. As epsilon
is increased the model complexity is increased, which
leads us to recommend evaluation all values from 0.05
to 0.35.
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